10 Awesome Topics in Biology Part II

10 Awesome topics in Biology

  • Nanobiotechnology

There are multiple points where Nanotechnology finds an application in the Biological Sciences (nanopores for DNA sequencing, carbon nanotubes, generation of new functional materials for biosensing, tissue engineering or pharmacological delivery, to name a few).

We have already mentioned DNA origami, but the field is wider. Here are some useful links:

a. Lu, et al., (2006), The role of molecular modeling in bionanotechnology.
b. Taylor, (2007), Biological matrices and bionanotechnology.
c. Villaverde, (2010), Nanotechnology, bionanotechnology and microbial cell factories.
d. Langer and Peppas, (2003), Advances in Biomaterials, Drug Delivery, and Bionanotechnology.
e. Cady, (2007), Nanobiology.
f. Cornell Nanobiotecnology Center.

  • Protein Engineering

Proteins are the most functionally diverse biomolecules. They are basically chains of amino acids that fold and interact with other cell components, depending on the particular three-dimensional conformation that those amino acid chains acquire.

Proteins can now be semi-rationally produced using some genetic techniques. This semi-rational modification of proteins is called “protein engineering”.

Already existing proteins or protein domains (protein domains are discrete protein modules with a particular activity, which are shared and combined differently among proteins, making them perform different overall different functions) can be shuffled and combined in configurations that do not exist in nature in order to generate proteins with novel functions. This can be done by cutting and pasting the DNA code that corresponds to a particular amino acid sequence.

But novel proteins structures can also be designed in a computer! After their corresponding DNA code is synthesized and cloned into cells, a completely artificially designed protein can be produced from living cells.

Some links on Protein Engineering:

a. Carter, (2011), Introduction to current and future protein therapeutics: a protein engineering perspective.
b. Lutz, (2010), Beyond directed evolution—semi-rational protein engineering and design.
c. Clarke, (2010), Protein engineering for bioenergy and biomass-based chemicals.
d. Böttcher and Bornscheuer, (2010), Protein engineering of microbial enzymes.
e. Wen, Nair and Zhao, (2009), Protein engineering in designing tailored enzymes and microorganisms for biofuels production.
f. Cole and Gaucher, (2011), Exploiting models of molecular evolution to efficiently direct protein engineering.
g. Fisher, et al., (2010), De Novo Designed Proteins from a Library of Artificial Sequences Function in Escherichia Coli and Enable Cell Growth.
h. Klepeis and Fouldas, (2004), In Silico Protein Design: A Combinatorial and Global Optimization Approach.

  • DIYBio

Imagine having your own Molecular Biology lab in your garage, with centrifuges and PCR machines constructed by yourself and some test tubes with cells growing in a home-made culture media. This is the reality of the “Do It Yourself” Biology movement, or simply DIYBio, has been covered in The NY Times, Nature News, EMBO and Forbes.

One of the most interesting drives is that of bringing the biological science again to that stage where the in-house experimenter can also contribute to the generation of knowledge, like at their time Darwin and Mendel did.

Some cool links about DIYBio:

a. DIYBio An Institution for the Do-It-Yourself Biologist
b. A Biopunk Manifesto
c. Genspace New York City’s Community Biolab

  • Quantum Biology

Although they have been mainly studied in controlled, non-biotic conditions, quantum effects like entanglement, coherence and tunneling are also important at the biological level, specially in processes like photosynthesis, enzymatic catalysis and even avian magnetic sensing and olfactory signal reception. The study of this effects in biological systems is called Quantum Biology by some.

Some cool links about Quantum Biology:

a. Physics of life: The dawn of quantum biology
b. Quantum Microbiology
c. Fleming, et al., (2011), Quantum effects in biology.
d. Landsberg, (1984), Two general problems in quantum biology.

  • Molecular Paleobiology

Recently, a research group was able to bring back to life a plant whose fruits remained preserved in a 30,000 old squirrel burrow found in the Siberian permafrost. Doing the same with whole ancient animals is still a matter of fiction, but this can be done with some molecular components of organisms, like proteins.

Some resurrected proteins come from mamooths and oestrogen receptors. The study of this ancient proteins may bring new information for evolutionary analysis. Furthermore, other studies use ancestral enzymes to study functional diversification and some others use predicted ancestral sequences to engineer desired functions by directed evolution.

Further reading:

a. Benner, Saussi and Gaucher, (2007), Molecular paleoscience: systems biology from the past.
b. Huang, et al., (2012), Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.
c. Prehistoric proteins: Raising the dead
d. Mammoth blood protein ‘resurrected’ by scientists
support us

Un pensamiento en “10 Awesome Topics in Biology Part II”


Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s